CRAN 任务视图:机器学习与统计学习

维护者Torsten Hothorn
联系方式Torsten.Hothorn at R-project.org
版本2023-07-20
URLhttps://CRAN.R-project.org/view=MachineLearning
源代码https://github.com/cran-task-views/MachineLearning/
贡献欢迎对本任务视图提出建议和改进,可以通过 GitHub 上的问题或拉取请求,或通过电子邮件发送给维护者地址。有关更多详细信息,请参阅 贡献指南.
引用Torsten Hothorn (2023). CRAN 任务视图:机器学习与统计学习。版本 2023-07-20。URL https://CRAN.R-project.org/view=MachineLearning.
安装可以使用 ctv 包自动安装本任务视图中的包。例如,ctv::install.views("MachineLearning", coreOnly = TRUE) 安装所有核心包,或 ctv::update.views("MachineLearning") 安装所有尚未安装和更新的包。有关更多详细信息,请参阅 CRAN 任务视图计划.

一些附加包实现了计算机科学和统计学之间边界领域中发展出的想法和方法——这个研究领域通常被称为机器学习。这些包可以大致分为以下主题

CRAN 包

核心abesse1071gbmkernlabmboostnnetrandomForestrpart.
常规adabag, ahaz, ALEPlot, arules, BART, bartMachine, BayesTree, BDgraph, Boruta, bst, C50, caret, CORElearn, Cubist, DALEX, deepnet, dipm, DoubleML, earth, effects, elasticnet, evclass, evreg, evtree, fastshap, frbs, gamboostLSS, glmertree, glmnet, glmpath, GMMBoost, grf, grplasso, grpreg, h2o, hda, hdi, hdm, iBreakDown, ICEbox, iml, ipred, islasso, joinet, kernelshap, klaR, lars, LiblineaR, lightgbm, lime, maptree, mlpack, mlr3, model4you, mpath, naivebayes, ncvreg, nestedcv, OneR, opusminer, pamr, party, partykit, pdp, penalized, picasso, plotmo, pre, qeML, quantregForest, quint, randomForestSRC, ranger, Rborist, rgenoud, RGF, RLT, Rmalschains, rminer, ROCR, RoughSets, RPMM, RSNNS, RWeka, RXshrink, sda, semtree, shapper, shapr, shapviz, SIS, splitTools, ssgraph, stabs, SuperLearner, svmpath, tensorflow, tgp, tidymodels, torch, tree, trtf, varSelRF, wsrf, xgboost.
已归档penalizedLDARcppDL.

相关链接